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Abstract

We discuss the relationships between three approaches to
greedy heuristic search: best-first, hill-climbing, and beam
search. We consider the design decisions within each family
and point out their oft-overlooked similarities. We consider
the following best-first searches: weighted A*, greedy search,
A

∗

ǫ
, window A* and multi-state commitment k-weighted A*.

For hill climbing algorithms, we consider enforced hill climb-
ing and LSS-LRTA*. We also consider a variety of beam
searches, including BULB and beam-stack search. We show
how to best configure beam search in order to maximize ro-
bustness. An empirical analysis on six standard benchmarks
reveals that beam search and best-first search have remark-
ably similar performance, and outperform hill-climbing ap-
proaches in terms of both time to solution and solution qual-
ity. Of these, beam search is preferable for very large prob-
lems and best first search is better on problems where the goal
cannot be reached from all states.

Introduction
In many applications of heuristic search finding optimal so-
lutions is prohibitively expensive. Despite abandoning opti-
mality, we strive to find solutions of high quality as quickly
as possible. In this paper, we consider the three major fam-
ilies of algorithms that are suitable for solving shortest path
problems: best-first, hill-climbing, and beam searches.

Algorithms like weighted A* (Pohl 1970) systematically
explore the search space in ’best’ first order. ’Best’ is de-
fined by a node ranking function which typically considers
the cost of arriving at a node,g, as well as the estimated
cost of reaching a goal from a node,h. Some algorithms,
such asA∗

ǫ
(Pearl and Kim 1982) also consider the distance

of a node from the goal,d. Hill-climbing algorithms are less
deliberative; rather than considering all open nodes, theyex-
pand the most promising descendant of the most recently ex-
panded node until they encounter a solution. Beam searches
exist in between these families of algorithms, exploring a
fraction of the space and pruning regions that appear less
promising.

Although these algorithms can all be applied to the short-
est path problem, we are unaware of any studies that directly
compare them. The main contribution of this paper is the
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first cross-family empirical comparison that includes sucha
wide variety of algorithms. Our study considers six standard
benchmark domains: pathfinding in grids (Thayer, Ruml,
and Bitton 2008), the traveling salesman problem (Pearl and
Kim 1982), dynamic robot pathfinding (Likhachev, Gordon,
and Thrun 2003), the sliding tile puzzle (Korf 1985), the
pancake puzzle (Holte, Grajkowskic, and Tanner 2005), and
a vacuum-robot domain (Russell and Norvig 2010). Our
evaluation shows that the strength of hillclimbing algorithms
is their amenablity to realtime settings, not the quality of
solutions they return or the time they require to find them.
We find that despite their differences, best-first search and
beam search frequently provide a comparable time-solution
quality trade off, with best-first searches having an advan-
tage on problems where the goal cannot be reached from
all states, and beam searches having better scaling behavior
due to their bounded memory consumption. This improved
understanding is a necessary first step toward choosing algo-
rithms appropriate to a given problem and toward designing
a better greedy search.

We begin by comparing various algorithms within each
family, and selecting the best algorithms in each family to
consider in the cross-family evaluation we then perform. We
use these results to make recommendations about when to
use each algorithm family.

Best-First Search
In best-first search nodes are expanded one at a time ac-
cording to some definition of best. The simplest search
algorithms order all nodes on a single criterion, typically
an estimate of the cost of a solution passing through that
node. More sophisticated best first searches likeA∗

ǫ
(Pearl

and Kim 1982), Window A* (Aine, Chakrabarti, and Kumal
2007), and multi-state commitment k weighted A* (Furcy
and Koenig 2005b) define a privileged set of nodes from
which nodes are expanded.

Of the three major algorithm families, the best-first search
family seems least oriented towards solving a problem as
quickly as possible. These algorithms are complete, or in
the case of anytime window A* can be made to be complete,
and in some cases they expend effort to prove the quality of
their solutions. The completeness of these algorithms is the
result of their having an open list of unbounded size, and
the fact that they only terminate when they have found a



solution or they have emptied the entire open list. Despite
the fact that the time and space complexity of a best-first
search is bounded only by the size of the underlying search
space, the completeness of these algorithms allows best-first
searches to avoid problems created by heuristic error and
local extrema. We now introduce the best-first searches we
consider.
Weighted A* is a simple and effective bounded suboptimal
search. The traditional node evaluation function of A* (Hart,
Nilsson, and Raphael 1968) isf(n) = g(n) + h(n). In
weighted A*, this function is modified to place additional
emphasis on the heuristic evaluation function, resulting in
f ′(n) = g(n) + w · h(n). The weight,w, increases the
importance ofh, the estimated cost to go, relative tog, the
cost already incurred, in the node ordering function.

Weighted A* has the property that when it finds a solu-
tion, its cost is within a factorw of the optimal solution cost.
Proving the solution meets some quality bound might seem
expensive, especially when no such requirement exists. A
prerequisite of maintaining a quality bound is paying atten-
tion to g, and this can help an algorithm avoid being misled
by overly optimistic heuristics.
Greedy best-first search(Doran and Michie 1966) is the
logical extreme of weighted A*. Rather than scalingh rel-
ative to g, greedy search ignoresg completely. As a re-
sult, there is no way to request a fixed quality solution from
greedy search; the quality of the solution returned may be
determined after the fact by comparing its cost with a lower
bound on the optimal solution cost for the problem which
can either be derived from the initial state or a linear scan of
all the nodes on the open list when the goal was returned.
A

∗

ǫ
maintains two orderings on the nodes, allowing two

sources of information to be considered when deciding
which nodes to expand. The open list ofA∗

ǫ
sorts nodes as

they would be by A*.A∗

ǫ
uses the open list to form a subset

of nodes to consider for expansion called the focal list. The
focal list contains all nodes such thatf(n) ≤ w · f(fmin),
wherefmin is the node with minimumf(n). The focal list
is sorted in increasing order ofd. At each step,A∗

ǫ
expands

the node with minimumd from the focal list. In some sense
it behaves much like a greedy search ond, but rather than
comparing all of thed values globally, it singles out a subset
of the nodes to be considered.
Window A* is an incomplete search in which A* is run on
a sliding window of sizes instead of considering the entire
open list. Each node considered for expansion is compared
to the depth of the deepest node found thus far. If the deep-
est node is more thans nodes deeper than the current node,
the current node is pruned. The sliding window forces the
search algorithm to dive deeper and deeper into the search
space by pruning nodes that are high in the search tree. Al-
though window A* prunes nodes like a beam search, there is
no bound on the size to which its open list can grow. For this
reason, we include window A* with the best-first searches.

Anytime window A* is an extension of window A*
where window A* is run with iteratively increasing window
sizes. By starting with a small window, and increasing the
size when an iteration terminates, anytime window A* can
find increasingly improving solutions, eventually terminat-

ing with the optimal solution. When evaluating window A*,
we look at the first solution returned by anytime window
A*, rather than any particular setting of window size. This
neatly avoids the problem of hand tuning the parameter for
this particular search.
Multi-State Commitment Search Maintaining a set of
privileged nodes is not only useful for improving search or-
der, it also helps algorithms scale, as shown by Furcy and
Koenig (2005b) in their paper on multi-state commitment k-
weighted A*(MSC-kwA*). LikeA∗

ǫ
and window A*, MSC-

kwA* maintains a privileged set of nodes to be considered
for expansion, the commit list. MSC-kwA* has three pa-
rameters. The first isw, identical in form and function to
that used by weighted A*. The second parameter defines
the size of the commit list. The third parameter isk. Each
time the algorithm is ready to proceed, it removes thek best
nodes from the commit list and expands all of these nodes.
The children are put back into the commit list. If there is no
room in the commit list, the worst node on the commit list is
removed and placed onto another list called the reserve list.
If the commit list is ever smaller than the maximum possible
size, it is replenished from the reserve list.

Comparison of Best-First Algorithms
Window A*, A∗

ǫ
and MSC-kwA* are similar The intuition

behind all three algorithms is that the size of the relevant
search space can be reduced by defining a subset of the most
promising nodes, and expanding only those nodes.
Ignoring Duplicates If the state space forms a graph,
there are many ways a search may arrive at the same
state. When using inconsistent heuristics or algorithms other
than weighted A*, ignoring duplicate states may relax the
bound (Ebendt and Drechsler 2009). In this evaluation the
bound is of no consequence, so all algorithms should avoid
re-expanding duplicates as this typically results in fewer
node expansions (and solutions of lower quality).
Empirical Results All algorithms were implemented in Ob-
jective Caml, compiled to native binaries, and run on 3.16
GHz Intel Core 2 duo E8500 systems with 8 Gb RAM under
64-bit Linux. Algorithms with suboptimality bounds were
sampled at 100000, 100, 50, 20, 15, 10, 7, 5, 4, 3, 2.5, 2,
1.75, 1.5, 1.3, 1.2, 1.15, 1.1, 1.05, 1.01, 1.001, 1.0005 and
1 while algorithms with integer parameters were sampled at
50000, 10000, 5000, 1000, 500, 100, 50, 10, 5, and 3. All
runs were limited to 5 minutes of cpu time. Any algorithm
not able to find a solution within that time was considered
to have failed. Algorithms were terminated after 300 sec-
onds. This time limit was such that memory was not an is-
sue, except on the 7x7 sliding tile puzzle. In that domain, we
defined a failure as either running out of time or memory.

The first domain considered is the dynamic robot path
planning domain (Likhachev, Gordon, and Thrun 2003).
Here the object is to control a robot’s heading and veloc-
ity to drive it from one place to another. We also consider
vacuum robot path planning, which is a domain inspired by
(Russell and Norvig 2010) in which a robot must clean all
dirty squares on a grid. We also consider path planning on
grids as it is a simplification of the vacuum robot path plan-
ning problem. Another domain we consider is the sliding



Domain Cycles Dead
Ends

Unit
Cost

Depth
Bound

Branching
Factor

TSP None No No Yes 1–99
Vacuum Short Yes Yes No 0–3
Grid Life Short Yes No No 0–3
Pancake Short No No No 8-9
Robot Long Yes No No 0–240
Tiles Long No Yes No 1–3

Table 1: Domain Attributes

tile puzzle (Korf 1985). In addition to that, we also consider
the heavy pancake puzzle, which is a derivative of the stan-
dard pancake puzzle in which the cost of flipping a stack of
pancakes is proportional to the indexes of the pancakes that
are to be flipped. For the between-family comparison, we
also consider the traveling salesman problem.

Domains can be classified in many ways. We consider five
domain attributes, cycles, dead ends, cost function, depth
bound, and branching factor. The domains we selected pro-
vide a wide range of combinations of these attributes, sum-
marized in Table 1.

In Table 2 the results of the different algorithms under
consideration are shown for our selected benchmark do-
mains. We show the quality of a solution as between 0 and
1. We calculate this by dividing the cost of the best solution
found for the problem by the cost of the solution returned by
an algorithm. Failing to find a solution earns a score of 0 and
finding the best solution over all algorithms earns a score of
1. The number shown in the Q column is the average of this
quality metric across all instances. The T column is the av-
erage run time in seconds, including failed runs. For each
domain, bold denotes the best algorithm valuing quality and
tie breaking on time. Italics denotes the best algorithm valu-
ing run them and tie breaking on quality. When applicable,
considerations are made for failure rate.

In dynamic robot path planning, the algorithm of choice
is either weighted A* orA∗

ǫ
, since anytime window A* fails

almost all the time, greedy best-first search finds poor qual-
ity solutions and MSC-kwA* takes significantly longer to
find solutions. In the vacuum robot path planning domain,
weighted A*, greedy search, andA∗

ǫ
can all be argued to be

the algorithm of choice, depending on the desired solution
quality-time trade-off. Anytime window A* fails too often
and although MCS-kWA* returns high quality solutions, it
takes longer than weighted A* with a weight of 2, so neither
of these algorithms are competitive in this domain. All of
the algorithms under consideration performed well on grids,
with the exception of anytime window A*, which was once
again plagued by a high failure rate. On the sliding tile puz-
zle, weighted A* with a weight of 5 finds a solution of rea-
sonable quality almost instantly, whereas weighted A* with
a weight of 2 offers the best solution quality. Anytime win-
dow A*, greedy best-first search, and MSC-kwA* all find
solutions quickly, but the solutions are of lower quality than
those of weighted A*. In the last domain, the heavy pancake
puzzle, the clear choice is weighted A* with a weight of 2,
since it finds the best solutions in under a tenth of a second.

In all five benchmark domains considered, weighted A*

was always capable of producing the highest quality solu-
tions. When other algorithms were able to produce solutions
of comparable quality, the other algorithms were never able
to produce a run time that was significantly different than the
run time of weighted A*. On some domainsA∗

ǫ
was able to

find solutions significantly faster than weighted A*, so we
also considerA∗

ǫ
when evaluating best-first searches against

the other algorithm families. MSC-kwA* was competitive
in grid path planning, but its performance was never an im-
provement over weighted A*, and was often substantially
worse in terms of either time or solution quality. The same
can be said for greedy search. For this reason, we shall only
consider weighted A* andA∗

ǫ
further.

Hill-climbing
A basic hill climbing algorithm expands one node at a time
beginning with the root, and each time expands only the best
child of the previously expanded node. One might reason-
ably conclude that these algorithms do no more work than
they absolutely have to do; no effort is expended to guar-
antee solution quality or completeness. Consequently, we
might reasonably expect hill climbing algorithms to find so-
lutions with very little effort, allowing them to be extremely
competitive in this setting. Hill-climbing algorithms have
two major drawbacks: some lack a tunable parameter so
that we can select an appropriate trade-off between speed
and quality, and the algorithms are brittle, frequently failing
to find solutions. We now introduce the hill-climbing algo-
rithms considered.
Enforced Hill-climbing Local extrema are a common chal-
lenge for hill-climbing. In these situations, the algorithm
must move through a potentially large area of worse states
before it reaches the next best state. We could choose to just
terminate, or behave randomly until we find a new decreas-
ing value. Both return poor quality solutions, since termina-
tion returns no solution at all and it could be a while before
a random walk discovers a way out of the local extrema.

There are better tactics than random behavior. Hoff-
mann and Nebel (2001) suggest that when facing a local
extrema, we search systematically outwards using a breadth-
first search until we find a node which is better than our cur-
rent position, at which point we move to the better location
and continue our hill-climbing. This approach performs far
better in practice than behaving randomly, but is not with-
out pitfalls. Performing this breadth-first search often proves
prohibitively costly, as shown in the comparatively high fail-
ure rate of enforced hill climbing.
Real-time SearchWe place real-time search algorithms into
the hill-climbing family due to the common trait of commit-
ting to actions before the search has completed. In real-time
search this is motivated by a time constraint on taking ac-
tions in the real world. Although that constraint does not
apply in our evaluation, real-time algorithms such as LSS-
LRTA* (Koenig and Sun 2008) can still effectively solve
shortest path problems. LSS-LRTA* searches outward from
its current state using A* for a fixed duration. Next it com-
mits to the best looking state on the frontier. Last, it runs
Dijkstra’s algorithm to improve the heuristic values. The al-



Alg. Robot Vacuum Grid Tiles Pancake
F% Q T F% Q T F% Q T F% Q T F% Q T

WA*(2) 0 1.0 0.1 0 1.0 3.3 0 1.0 0.7 0 1.0 0.6 0 1.0 0.0
WA*(5) 0 0.7 0.0 0 0.8 1.6 0 0.9 0.3 0 0.7 0.0 0 0.8 0.0
A*eps(2) 0 0.8 0.0 65 0.3 197 0 0.7 5.3 9 0.7 34.0 0 1.0 0.1
A*eps(5) 0 0.8 0.0 0 0.7 1.2 0 0.7 0.1 0 0.5 0.0 0 0.7 0.0
Greedy 0 0.1 0.1 0 0.7 1.1 0 0.8 0.2 0 0.2 0.0 0 0.6 0.0
Anytime Window A* 97.5 0.0 293 63 0.3 220 85 0.1 278 0 0.2 0.0 0 0.2 2.0
MSC-kwA*(10, 5, 2) 0 1.0 0.5 0 1.0 4.1 0 1.0 0.7 0 0.3 0.0 0 0.5 0.0

Table 2: Mean performance of best-first searches across our benchmarks
(F% = failure rate, Q = quality, T = time in seconds, italicized denotes competitive on time, bold competitive on quality)

gorithm repeats this process until a goal is found or there are
no children to expand.
Depth-First Branch and Bound We do not consider algo-
rithms from this family because they work poorly when the
search space does not have a depth bound. Of our six bench-
mark domains only the TSP has bounded depth. Similarly,
genetic algorithms rely upon quickly and easily finding fea-
sible, or close to feasible candidate solutions to breed to-
gether. We are not aware of any studies that consider genetic
algorithms for implicitly represented large graphs, so we do
not consider that family of algorithms here.

Comparison of Hill-Climbing Algorithms
Pitfalls of Early Commitment Hill-climbing algorithms
are extremely brittle on some common benchmark domains,
such as the dynamic robot path planning domain. In this do-
main, there are many nodes that have no children. For exam-
ple, nodes with the robot moving very quickly towards a wall
generate zero nodes since the robot crashes no matter what
control action is applied. While complete algorithms such as
weighted A* can easily recover by considering a node from
before the fatal decision, hill-climbing algorithms and real-
time algorithms can end up in situations where they can no
longer solve the problem, the result of early commitment.
At every step, hill-climbing algorithms commit to a node,
which sometimes causes early termination.
Comparing LSS-LRTA* with Hill Climbing Table 3
shows the relative performance of enforced hill-climbing
and LSS-LRTA*. Enforced hill-climbing is only competi-
tive with LSS-LRTA* on the pancake puzzle and vacuum
robot planning. The time to solution quality trade-off of
enforced hill-climbing on dynamic robot path planning and
tiles is abysmal due to a high failure rate. On grid path plan-
ning, enforced hill-climbing is dominated by LSS-LRTA*.
In vacuum robot path planning and the pancake puzzle en-
forced hill-climbing is competitive with LSS-LRTA*, but
the performance is comparable. The failure of enforced hill-
climbing on the dynamic robot domain and the sliding tile
domain, combined with the fact that the performance is oth-
erwise comparable to that of LSS-LRTA* justifies its exclu-
sion from further consideration.

Beam Search
In this section, we first discuss the different kinds of beam
searches, and important design decisions that must be made
when implementing a beam search. Beam searches can be

grouped into two general categories. In a best-first beam
search, the beam search is run just like a best-first search, ex-
cept that when the open list grows beyond a predetermined
size limit, the lowest quality nodes are removed from the
open list until the open list is within its size bound (Rich and
Knight 1991). The other kind of beam search is a breadth-
first beam search. These are the same as a breadth-first
search, except at each depth layer a fixed number of nodes
are expanded; the rest are pruned (Bisiani 1992).

Although both variants were used for experiments, best-
first beam searches performed poorly when compared to
breadth-first beam searches, as can be seen in the left pane of
Figure 1. The points on the scatter plots are connected with
lines that show the relationship between points as a func-
tion of the parameter being used by the algorithm (weight,
beam width, or look ahead). The y-axis represents solution
quality.

As can be seen in the left pane of Figure 1 breadth-first
beam searches return better solutions than best-first beam
searches in less time, so there is no reason one would want to
use a best-first beam search over a breadth-first beam search.
Consequently, all beam searches presented in the remainder
of this paper are breadth-first beam searches.

The poor performance of best-first beam search on the
sliding tile puzzle can be attributed to the admissibility of
the Manhattan distance heuristic. In a best-first beam search
there are nodes of different depths competing for entry into
the beam. With an admissible heuristic,f values typically
increase with depth. Consequently, it is often the case that
shallow nodes look more promising than deep nodes, even
if the deeper node is, in reality, the superior node.

To test this hypothesis, we examined a search on an 8-
puzzle in detail, where we knowh∗, the true cost-to-go.
Best-first beam search pruned 468 nodes. 397 of the prun-
ings eliminated a node with highg in favor of one with lower
g. Unfortunately, 33% of the time replacing the deeper node
was detrimental to the search, since the deeper node had a
lower g + h∗ than the new node. On the same problem,
breadth-first beam search was much more successful, only
pruning the better node 11% of the time. The improved
discrimination of breadth-first beam search makes a huge
difference in solution quality. The solution found by the
breadth-first beam search was optimal, whereas the best-first
beam search found a solution with cost approximately 10
times that of optimal.
Closed ListsWhen implementing a beam search, one must



Alg. Robot Vacuum Grid Tiles Pancake
F% Q T F% Q T F% Q T F% Q T F% Q T

EHC 65 0.4 196 2 0.9 9.9 0 0.7 12.0 37 0.5 246.7 0 0.7 0.0
LSS-LRTA*(50) 100 0.1 0.3 0 0.2 18.6 0 0.3 10.5 0 0.4 0.0 0 0.2 0.7
LSS-LRTA*(500) 52.5 0.4 2.3 0 0.6 11.8 0 0.8 4.3 0 0.6 0.2 0 0.6 0.6
LSS-LRTA*(5000) 5 1.0 5.2 0 0.9 17.3 0 1.0 6.0 0 0.8 0.9 0 0.9 0.6

Table 3: Mean performance of hill-climbing searches acrossour benchmark domains
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Figure 1: Beam searches on 15-puzzle, life cost grid path planning, and dynamic robot navigation

decide how (if at all) to use a closed list. We can choose not
to maintain one, to ignore all duplicate states encountered,
or to re-expand duplicates that have betterg values than the
previous expansion. In some domains, beam searches per-
form very poorly when not using a global closed list. On one
15-puzzle instance beam search without a closed list kept ex-
panding the same 2,467 nodes forever, while the same search
augmented with a closed list solved the problem by generat-
ing 5,247 nodes and detecting 65 duplicates. On the pancake
puzzle and the TSP, the heuristic is sufficient to guide beam
search away from cycles (or in the case of the TSP there are
no cycles), but on grid path planning, dynamic robot path
planning, vacuum robot planning, and sliding tiles, some-
thing must be done to break cycles.

Closed lists allow an algorithm to detect duplicate nodes,
so that they may be effectively dealt with. One option is to
prune the duplicate node. Another choice is to compare the
duplicate node to the previous expansion of it and compare
theg value to see if the latest expansion represents a better
path to that state. The latter option is extremely important
for the performance of beam search in domains with many
duplicates and non-unit cost.

The center and right panes of Figure 1 show a surprising
trend which is the direct result of duplicate handing policy.
Here we see several different kinds of beam search with dif-
ferent closed list policies. “Beam Search DD” immediately
prunes any duplicate node, while “Beam Search” (Bisiani
1992) allows the duplicate nodes to be re-expanded if the
new expansion has a betterg value. BULB, Complete Any-
time Beam, and Beam Stack Search are other kinds beam
search that will be discussed later. These plots show that
re-expanding duplicates allows the algorithm to find higher
quality solutions. The beam search that drops duplicates also

has the unusual attribute that increasing the beam width de-
creases the solution quality, while simultaneously increasing
the time to the first solution.

The unusual scaling behavior seen in Figure 1 can be seen
in domains with non unit cost. An example of this is grid
path finding with life costs, where the cost of moving out of
a cell is proportional to the cell’s y value (Thayer and Ruml
2008). If there are many paths to the goal, the breadth-first
beam searches will only consider the most promising paths.
As the beam width increases, the number of less promising
paths considered also increases. Beam searches with smaller
beams greedily follow longer solutions, whereas their coun-
terparts with larger beams find more expensive but shallower
solutions as a result of their larger beams. Although the
wider beam widths find shallower solutions, the increased
beam widths cause the algorithm to take longer than when
run with a smaller beam.
Incompleteness of Beam SearchA consequence of inad-
missible pruning is that it is possible to prune all nodes that
lead to goals. There are two approaches to remedy this prob-
lem. Zhang (1998) suggests restarting the search using a
wider beam. An alternative that does not increase the mem-
ory consumption is backtracking, which is the approach fol-
lowed by Furcy and Koenig (2005a) with BULB and Zhou
and Hansen (2005) with beam-stack search.

Zhou and Hansen (2005) define the beam-stack algo-
rithm to begin with some initial upper bound found by some
approximation algorithm. Consequently, the first solution
found by beam-stack search is whatever solution the approx-
imation algorithm found. As a result, beam-stack does not
directly apply in the evaluation context used here, but it can
be modified to take infinity as the upper bound, which is
what we did. BULB and beam-stack search both drop dupli-



cates on expansion without regard to quality. The result of
this behavior is that BULB exhibits unusual scaling behav-
ior, shown in Figure 1. Beam stack search runs into timeout
problems instead, failing to find solutions when the beam
width is too small or too large.
Comparison of Beam Search AlgorithmsFor the inter-
family algorithm comparison, we selected a breadth-first
beam search that re-expands duplicates over the alterna-
tives. Best-first beam search was not selected because it does
not perform as well as its breadth-first counterpart. Com-
plete beam searches alleviate the problems of incomplete-
ness from a theoretical perspective, but within the time limit
considered both BULB and beam-stack search often fail to
find solutions if the beam width is too small, just like their
incomplete cousins. The only domains where breadth-first
beam searches encountered premature termination problems
that complete beam searches could solve are grid path plan-
ning, vacuum robot planning, and dynamic robot navigation.
Figure 1 shows that the breadth first beam search outper-
forms the other beam searches in dynamic robot path plan-
ning, an artifact of duplicate handling. The results are mixed
on grid path planning, where BULB is able to find low qual-
ity solutions faster, but suffers from the same scaling prob-
lem that duplicate dropping beam searches encounter. The
balance of the evidence points to the conclusion that the best
beam search is a breadth-first beam search.

Comparison of Search Algorithm Families
We now discuss the results of the cross-family comparison.
We group the results by underlying phenomenon that are re-
sponsible for ordering the performance of the various algo-
rithms considered.
Dead End NodesThe right pane of Figure 2 demonstrates
the problems that dead-ends can produce for search algo-
rithms. When beam search or LSS-LRTA* fails to find a
solution it can be attributed to one of two things happening.
Either the algorithm ran out of nodes to expand, or the algo-
rithm ran out of time. As can be seen in Figure 2, when the
beam searches and LSS-LRTA* fail to find a solution, they
fail quickly which shows that in this domain, the dead end
nodes are causing early termination.

In addition to domains that have nodes beneath which no
solution exists, there are other domains with no natural dead
ends that can easily be partitioned into subspaces. If some
of those subspaces have no goal nodes, this is topologically
equivalent to a dead end. Beam searches must use a closed
list to find solutions, but restricting re-expansions to nodes
with improvedg can divide the search space into multiple
components, some with no goals. Consider the grid path
planning problem in the left pane of Figure 3. If B or B’
get put on the closed list, the space is partitioned into two
regions, one of which has no goals. The collection of nodes
B” can also partition the space. If nodes are only being ex-
panded in a partition with no goals, the search algorithm will
probably not solve the problem. To escape a partition, at
least one node defining the partition has to be re-expanded,
but that requires finding a better path to that node. This is
unlikely in most domains, and impossible in others.

Similarity of Beam Search to Breadth-First SearchOne
of the pitfalls of breadth-first search is the excessive use of
resources. Inadmissible pruning helps alleviate this prob-
lem, but breadth-first beam searches still bear a striking re-
semblance to breadth-first search. In a problem with a per-
fect heuristic, best-first searches expand only nodes alonga
path to the goal. A beam search will expand beam widthw
nodes at each depth. This can be a major disadvantage, as
beam search can potentially expandw times as many nodes
as a best first search on the same problem. Other algorithms
expand one node at a time, so they frequently expand only a
few nodes at each level. Beam searches always expand a full
beam worth of nodes, even if the nodes are of low quality.

The result of this is that beam searches sometimes expand
more nodes than other search algorithms. The right pane
of Figure 3 shows the log of the nodes generated on the x-
axis, with solution quality on the y-axis. Beam search is
expanding an order of magnitude more nodes than the best-
first searches. Despite this, the beam search is still com-
pleting the search in about the same amount of time as the
best-first searches, as can be seen in the center pane of Fig-
ure 3. In the pancake domain this is not a big deal, since
the time-solution quality trade-off is still reasonable. This is
not the case in all domains. In the 100 city TSP, shown in
Figure 2, beam search with a beam width of 3 must gener-
ate about 15000 nodes in order to reach the bottom of the
search tree, which takes about 10 seconds. For comparison,
weighted A* is able to generate the minimum 5000 to solve
the problem in about 2 seconds.

Not all node generations are equivalent. Depending on
the heuristic used, the time it takes to calculate can vary by
more than an order of magnitude. For example, the heuris-
tic we used for the TSP and vacuum robot path planning are
both based on a minimum spanning tree, and consequently
takes much more time to compute when there are a large
number of places left still to be visited. Beam searches ex-
pand all the nodes near the root until the beam fills up, but a
best-first search will expand nodes only one at a time. Best
first searches (particularly weighted best first searches) of-
ten expand only a few nodes at each level near the root. For
the experiments used to generate the left panel of Figure 2
the heuristic involved calculating a minimum spanning tree
which requires more time to calculate near the root where
there are still a large number of places to visit.
Scaling To Large InstancesA major application of un-
bounded suboptimal search is solving very large problems
that can’t be solved by A* due to memory constraints, and
where IDA* may take too long. Even weighted A* be-
comes impractical on the 15-puzzle when the weight is small
enough. Using a weight of 1.1, the failure rate is 30% within
8 Gb of memory, so we only consider the relatively high
weights of 3 and 5.

Table 4 shows the performance of these algorithms on the
15-puzzle and the 48-Puzzle. Relative to the other problems
considered, the 48 puzzle has a significantly larger search
space, combined with the fact that it is not a fixed-depth
combinatorial optimization problem so finding even a poor
quality solution is not trivial. Of the algorithms considered,
beam search is the clear algorithm of choice. LSS-LRTA*
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Figure 2: Performance on TSP, Vacuums, and Grid Pathfinding
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Figure 3: A grid path planning instance and performance on 10heavy pancakes puzzle

Alg. 15 48
F% Q T F% Q T

WA*(5) 0 0.8 0.0 66 0.3 228
WA*(3) 0 0.9 0.1 96.1 0.0 291
A*eps(5) 0 0.5 0.0 58.3 0.3 188
A*eps(3) 0 0.6 0.3 98.1 0.0 295
Beam(10) 0 0.4 0.0 0 0.2 3.3
Beam(100) 0 0.9 0.0 12.6 0.5 52.2
LSS-LRTA*(10) 0 0.1 0.0 0 0.1 10.3
LSS-LRTA*(100) 0 0.3 0.1 0 0.2 11.8
Anytime Window A* 0 0.2 0.0 4.9 0.1 27.2

Table 4: Mean performance of selected algorithms on the 15
and 48 sliding tile puzzles

with a look-ahead of 100 can provide solutions of similar
quality, but this comes at a cost of increased average run
time. Compared to beam search with a beam width of 10,
anytime window A* returns higher cost solutions while tak-
ing more time, as well as sometimes failing to find any solu-
tion. Weighted A* andA∗

ǫ
fail more than half the time thus

have low average quality with a very high average run time.
Table 4 shows that beam search is the algorithm of choice
for solving large sliding tile puzzles.

Summary
One of the most important things we can gain from a study
such as this one is a set of rules which dictate in a very gen-
eral sense when each family of algorithm is preferable to one
another. From the results of our empirical analysis, we draw
the following set of rules.
Weighted A* and A

∗

ǫ
are the best best-first algorithms.

In all our benchmark domains, weighted A* was able to
find the highest quality solutions, whileA∗

ǫ
was often able to

find solutions of slightly lower quality in substantially less
time. In certain domains MSC-kwA* was competitive, but
the performance of this algorithm was erratic when consid-
ered across our benchmark domains, and its performance
was never significantly better than that of weighted A*.
LSS-LRTA* outperforms enforced hill-climbing. Results
in our benchmark domains show that LSS-LRTA* is much
more robust than enforced hill-climbing.
Breadth-first beam searches with duplicate re-expansion
is the most effective beam search.We considered sev-
eral variants of beam search, and showed that a breadth-first
beam search that re-expands duplicates with betterg is the
best choice. We found that breadth-first beam searches out-
perform best-first beam searches due to the nature of error
in admissible heuristics. We also found that beam searches



function best when they have a closed list and are allowed
to re-expand duplicate nodes. We also observed very un-
usual scaling behavior if duplicates were pruned due to the
fact that in some non-unit cost domains, short and expen-
sive paths can terminate in very high cost solutions. Overall,
it was clear that a breadth-first beam search that re-expands
duplicates with betterg offered the best combination of ro-
bustness, solution quality, and scaling behavior of all the
beam searches considered.

Dead ends are trouble for hill-climbing and beam search.
Since both beam search and LSS-LRTA* commit to in-
cluding certain states, if either algorithm commits to only
states that do not lead to a goal, no solution will be found.
Best-first searches considered never commit to including any
state, so they are naturally immune to dead ends. Due to the
use of a closed list to restrict re-expansions, beam search
can run into the same problem if the closed list partitions the
space, which can create artificial dead ends.

Massive search spaces require beam search.When scal-
ing up the size of any domain, best-first searches that use
an unbounded open list will eventually fail due to either
time or memory constraints. Both beam search and LSS-
LRTA* can continue to find solutions long after best-first
search becomes impractical, but beam search offers a bet-
ter time-solution quality trade-off. The problems associated
with best-first search become clear when we consider the
largest problem we ran on, the 48-puzzle. In this domain,
best-first searches that maintain a full open list often failto
find solutions because the cost of maintaining an open list
becomes prohibitive which causes timeouts.

Beam Search and best-first search are often compara-
ble. Despite radically different performance in certain situ-
ations, beam searches and best-first searches often provide
time-solution trade-offs that are comparable. In particular,
on the 15 puzzle, grid path planning, and the heavy pancake
puzzle the performance of the beam search and the best-first
searches algorithms was comparable. On domains where
the performance is similar, the domain is small enough that
the best-first searches can find solutions, and the topology
is such that beam search does not get stuck in regions with-
out goals, so we see both algorithms returning comparable
time-solution quality curves.

Conclusion

We presented the first comprehensive comparison across al-
gorithm families. This comparison showed us that real-time
algorithms, though applicable, should not be used for solv-
ing shortest path problems unless there is a need for real-
time action. This comparison also showed us that best-first
searches are preferable in domains where the goal cannot be
reached from all states, and that beam search has the most
robust scaling behavior.

This provides the first step towards a clearer understand-
ing of how to deploy greedy search algorithms and how to
better design more robust methods for greedy search.
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