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Consider a UAV fulfilling observation requests:

■ Observation requests (start–end locations) arrive over time

◆ Requests draw from known distribution

■ Minimize time to service observations

◆ Re-planning may reduce cost.
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Observations:

■ Life is more than one goal—others will come
■ “Planner” can run, even before goal arrives

Other examples:

■ Life (e.g., insurance)
■ Satellite planning
■ Taxi/ambulance dispatching
■ Manufacturing
■ PARC printer

Opportunity:

■ Estimate of future goals
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■ Simple and clean formalization of on-line planning

◆ Exposes key issues, yet very approachable

■ Show that hindsight optimization applies easily

◆ Not just for probabilistic planning any more!

■ Show that simple HOP is better than “reactive” planning

◆ Many avenues for future work
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Like classical planning:

■ Action effects are deterministic

but, on-line:

■ Goals arrive stochastically, distribution is known

Like MDP:

■ Minimize total cost, approximate over a fixed horizon, H
■ When evaluating actions:

V ∗

H(s1) = min
a1,...,aH

E
s2,...,sH

[

H
∑

i=1

C(si, ai)

]

■ State incorporates unachieved goals

Simple and clean formulation of on-line planning
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1. Plan for the current goals
2. Execute the plan until the goals change
3. Repeat
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1. Plan for the current goals
2. Execute the plan until the goals change
3. Repeat

Doesn’t take advantage of knowledge about future goals
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■ Consider possible future goals when planning actions
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Solve for all possible future goals

V
∗

H(s1) = min
a1,...,aH

E
s2,...,sH

[
H∑

i=1

C(si, ai)

]

A 3x3 UAV with ≤ 3 requests has tens of millions of states.
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Hindsight optimization – solve a sample of future goals

V̂H(s1) = E
s2,...,sH

[

min
a1,...,aH

H∑

i=1

C(si, ai)

]
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Hindsight optimization – solve a sample of future goals

V̂H(s1) = E
s2,...,sH

[

min
a1,...,aH

H∑

i=1

C(si, ai)

]

︸ ︷︷ ︸

Deterministic Planning
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1. Sample future goal arrivals
2. For each action

Evaluate mean plan cost over sampled futures
3. Take the best action
4. Repeat
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1. Sample future goal arrivals
2. For each action

Evaluate mean plan cost over sampled futures
3. Take the best action
4. Repeat

Simple, and uses knowledge about goal arrivals
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HOP has been applied to:

■ On-line scheduling (Chong, Givan, Chang 2000)
■ Stochastic integer programs (Mercier and van Hentenrych

2007)
■ Probabilistic planning (Yoon et al. 2008)

Now:

■ On-line Planning
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How do we know our technique is doing well?
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Goal: gain the most reward
How do we know our technique is doing well?

■ How does it compare to optimal?

◆ Imagine we have an oracle that knows the future

■ How does it compare to a simple planner?

◆ Greedy: evaluate cost-to-go heuristic on each successor
◆ Go to the state with the lowest heuristic value
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Goal: gain the most reward
How do we know our technique is doing well?

■ How does it compare to optimal?

◆ Imagine we have an oracle that knows the future

■ How does it compare to a simple planner?

◆ Greedy: evaluate cost-to-go heuristic on each successor
◆ Go to the state with the lowest heuristic value

Normalized reward:
reward normalized between optimal (1) and greedy (0)
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n
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a
rd

1

0

-1

react h=8 h=16
1 UAV

react h=4 h=8
2 UAVs

react h=4 h=8
3 UAVs

prob 0.02

Reactive ∼ greedy, HOP gives the most reward
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1

0.8

0.6

react h=8
0.2 damage

react h=8
0.4 damage

0.2 order

react h=8
0.2 damage

react h=8
0.4 damage

0.4 order

HOP is close to optimal and gives the most reward
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Pros:

■ HOP simple to implement (just need deterministic planner)
■ Better than the simple reactive approach
■ Better than MDP solvers for these problems

◆ 3x3 UAV: LRTDP 100x slower and worse than greedy

Cons:

■ HOP slower than reactive

◆ Finds many plans instead of just one
◆ Reactive: ∼ 0 seconds, HOP: 0.002–10 seconds
◆ But, see (Yoon et al. ICAPS 2010)
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■ Many problems are on-line continual planning problems
■ We can take advantage of the known goal distribution
■ Hindsight optimization is simple and works well
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Tell your students to apply to grad school in CS at UNH!

■ friendly faculty
■ funding
■ individual attention
■ beautiful campus
■ low cost of living
■ easy access to Boston,

White Mountains
■ strong in AI, infoviz,

networking, systems
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