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PAbstract

It is often useful to know the positions of nodes in a network. However, in a large network it is impractical to build a
single global map. In this paper, we present a new approach for distributed localization called Positioning using Local
Maps (PLM). Given a path between a starting node and a remote node we wish to localize, the nodes along the path
each compute a map of their local neighborhood. Adjacent nodes then align their maps, and the relative position of the
remote node can then be determined in the coordinate system of the starting node. Nodes with known positions can
easily be incorporated to determine absolute coordinates. We instantiate the PLM framework using the previously pro-
posed MDS-MAP(P) algorithm to generate the local maps. Through simulation experiments, we compare the resulting
algorithm, MDS-MAP(D), with existing distributed methods and show improved performance on both uniform and
irregular topologies.
� 2004 Elsevier B.V. All rights reserved.
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Future wireless sensor networks may involve a
large number of sensor nodes densely deployed
over physical space. Many applications require
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knowing the positions of the nodes, sometimes
their relative positions and sometimes even their
absolute positions. Nodes could be equipped with
a global positioning system (GPS) to provide them
with their absolute positions, but this is currently a
costly solution. With a network of thousands of
nodes, it is unlikely that the position of each node
can be pre-determined.

Localization has been a topic of active research
in sensor networks in recent years [1]. Most exist-
ing methods are for absolute positioning, i.e., find-
ed.
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ing the absolute positions of nodes in a global
coordinate system. Techniques that use local dis-
tance information include the convex constraint
satisfaction method [2], triangulation or multila-
teration methods [3,4], and collaborative multila-
teration [5]. These techniques require starting
with anchor nodes with known positions.

Less work has been done on relative positioning
without anchor nodes [6,7]. Relative locations are
useful for many basic functions of sensor net-
works. Examples include Greedy Perimeter State-
less Routing (GPSR) [8], Geographic and Energy
Aware Routing (GEAR) [9], and Information Dri-
ven Sensor Query (IDSQ) [10]. Application scenar-
ios include answering queries such as: ‘‘Where
does the loud noise come from?’’ or ‘‘In what
direction is that vehicle on my left moving?’’
Answering such queries requires knowing the rela-
tive locations of sensors close to the target.

In this paper, we present a new approach to dis-
tributed localization called Positioning using Local
Maps (PLM). The method estimates node loca-
tions based on local maps, i.e., positions of neigh-
bor nodes in the relative coordinate systems of
individual nodes. It can estimate the relative posi-
tions of nodes multiple hops away when there are
no anchor nodes with known positions. When
there are sufficient anchor nodes, e.g., 3 or more
for 2-D space, the method can then determine
the absolute positions of individual nodes in a dis-
tributed fashion.

After presenting the PLM framework, we will
instantiate it using a particular method to compute
the local maps called MDS-MAP(P). Through
simulation, we compare the resulting algorithm,
which we call MDS-MAP(D), with existing meth-
ods and demonstrate that it provides improved
localization results on both regular and irregular
network topologies.
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C2. Related work

In this paper, we focus on localization using
connectivity information or local distance meas-
ures between neighboring nodes. Several tech-
niques have previously been proposed for this
setting. The GPS-less system by Bulusu et al. [11]
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employs a grid of beacon nodes with known posi-
tions. Each unknown node sets its position to the
centroid of the beacons near the unknown. The
method needs a high beacon density to work well.
Doherty�s [2] convex constraint satisfaction meth-
od formulates the localization problem as a feasi-
bility problem with convex constraints. It is a
centralized method and needs well placed anchor
nodes, preferably on the outer boundary, to work
well.

Several distributed localization methods have
been proposed based on triangulation or multila-
teration. The APS by Niculescu and Nath [3] is a
typical example. The method is called DV-Hop

when only connectivity information is used and
DV-Distance when distance measures between
neighboring nodes are used. DV-Euclidean is an-
other method that uses the local geometry of the
nodes [3]. Its performance rapidly degrades as
range errors increase. For instance, it performs
poorly when the range error is over 2% [12]. The
Hop-TERRAIN method by Savarese et al. [4] is
similar to APS, but with an additional refinement
step. Savvides et al. [5] proposed a collaborative
multilateration method that needs more anchors
than the other methods to work well.

The techniques discussed above are for absolu-
tion positioning and need anchors to start with.
The self-positioning algorithm (SPA) [6] has been
proposed for relative positioning. This approach
is capable of determining the exact relative loca-
tions of nodes, but only in the absence of range er-
rors. When there are range errors, its performance
rapidly degrades.

MDS-MAP [7,13] is a localization method
based on multidimensional scaling which can often
generate good relative maps. Multidimensional
scaling (MDS) is a set of methods widely used
for the analysis of similarity or dissimilarity of a
set of objects and discover the spatial structures
in the data [14]. MDS methods start with one or
more distance matrices (or similarity matrices)
and find a placement of the points in a low-dimen-
sional space, usually two- or three-dimensional,
where the distances between points resemble the
original similarities. There are several varieties of
MDS and we focus on the classical MDS [15]. In
classical MDS, proximities are treated as distances
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in an Euclidean space and optimal analytical solu-
tions are derived from the proximity matrix effi-
ciently through singular value decomposition.
The main advantage of using MDS for node local-
ization is that it can generate relatively more accu-
rate position estimation even based on limited and
error-prone distance information.

Compared to multilateration-based methods,
MDS-MAP uses connectivity or local distance
measures between unknown nodes together with
those between unknown nodes and anchors, and
thus can obtain better results. Compared to SPA,
the MDS-MAP method is much more robust to
range errors, and it can work with only connectiv-
ity information. MDS-MAP(P) [13] is a variant of
MDS-MAP with improved performance on irregu-
lar topologies. MDS-MAP(P) first computes local
maps of individual nodes and then merges them to
form a relative map of the whole network. When
there are enough anchors, the relative map is
transformed to an absolute map. Although the lo-
cal maps are computed in a distributed fashion
and the merging can be done either sequentially
or in parallel, a global map is obtained and the
transformation of the global map is computed at
a central location.
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E3. Distributed localization: the PLM approach

Rather than trying to build a single global map,
in distributed localization we wish to estimate the
positions of only certain nodes of interest. Posi-
tioning using Local Maps (PLM) uses only local
maps along a path between two nodes to estimate
their relative positions or the absolute position of a
remote node of interest. This more controlled
localization scheme is useful in a wide variety of
scenarios. For example, if a node in a sensor net-
work detects a target, the root node will care only
about the positions of the nodes in vicinity of the
target. Path-based localization provides enough
information to answer queries such as ‘‘Where
does the loud noise come from?’’ or ‘‘Tell me in
what direction that vehicle is moving’’.

Specifically, to find the relative position of a re-
mote (target) node in the coordinate system of a
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center (starting) node from a given communication
path, PLM has the following three phases:

1. Build local maps.
Each node on the path computes its local map.
Various methods can be used to compute local
maps, such as MDS-MAP, SPA, or semidefinite
programming [16]. The local maps of individual
nodes only need to be computed once, if the
sensor nodes are static, and can be reused for
localizing other nodes later. The communica-
tion path between two nodes can be discovered
by various means, such as limited flooding or
constraint-based routing.

2. Compute alignments of adjacent local maps.
The local maps have different coordinate sys-
tems. Each pair of adjacent nodes on the path
find the common nodes between their local
maps and compute the parameters of the opti-
mal linear transformation to match the com-
mon nodes.

3. Determine the position of the remote node in
the coordinate system of the center node.
Along the path from the remote node to the
center node, a sequence of linear transforma-
tions (computed in Phase 2) are applied to the
position of the remote node to obtain its rela-
tive position in the coordinate system of the
center node.

In the alignment phase of PLM, the optimal lin-
ear transformation (minimizing conformation er-
rors) is computed to transform the coordinates
of the common nodes in one map to those in the
other map. The transformation includes transla-
tion, reflection, orthogonal rotation, and scaling.
Fig. 1 shows an example of computing the trans-
formation of two local maps. The two maps are
constructed by MDS-MAP using only connectivity
information.

If instead one wishes to estimate the absolute
positions of a node using anchor nodes with
known positions, the PLM approach is as follows:

1. Each anchor broadcasts its position throughout
the network. At each unknown node, the rela-
tive positions of each anchor in its local coordi-
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Fig. 1. An example of aligning two local maps based on their common nodes. Nodes inside the boxes in the first two diagrams are
common nodes.
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nate systems are computed based on a path,
e.g., a shortest path, between each anchor and
the unknown node.

2. At each unknown node, an optimal linear trans-
formation that maps all anchors from their rel-
ative positions to their absolute positions is
computed.

3. The absolute position of the unknown node is
computed by applying the transformation to
its relative position.

4. For each unknown node, its computed position
is refined using the computed positions of its
neighbors. It is an iterative refinement process.
By fixing its neighbors� positions, a least squares
minimization problem is solved to find the new
position of the unknown node.

An alternative to Steps 2 and 3 is to calculate
the distance of each anchor to the unknown node
and then apply multilateration to determine the
unknown�s position based on the distance infor-
mation and the anchors� absolute positions.
Empirically, this alternative does not work as well.
It inherits the deficiencies of multilateration on
irregular networks, such as the C-shape networks
shown later in Section 5.
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UN4. An instantiation of PLM: MDS-MAP(D)

PLM is a general approach to distributed local-
ization. In order to test its effectiveness, it must be
278
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Rinstantiated with a particular choice of method for
computing the local maps. MDS-MAP(D) imple-
ments PLM using the MDS-MAP(P) algorithm
to construct local maps. Let x = (xi, i = 1, . . . ,N)
represent the estimated coordinates of the N points
(nodes); dij = kxi � xjk2, the 2-norm of the differ-
ence of two points i and j, be their Euclidean dis-
tance; and pij be the empirically measured
proximity of nodes i and j. If nodes i and j are
within the radio range of each other, then pij is
the distance measure between them if it is available
and pij = 1 otherwise. Initially, pij does not exist
for nodes i and j that are outside the radio range
of each other.

The localization problem based on proximity
information is finding x values such that dij = pij.
When the proximity pij is just the connectivity or
inaccurate local distance measurement, usually
there is no exact solution to the overdetermined
system of equations. Thus the localization problem
is often formulated as an optimization problem
that minimizes the error in the approximate dis-
tances between the nodes:

min
x

XN

i¼1

XN

j¼1

ðdij � pijÞ
2 for all available pij ð1Þ

This optimization problem is non-convex with
many local minima. Traditional local optimization
techniques, such as the Levenberg–Marquardt
method, require a good initial candidate solution
in order to return acceptable final results. Ran-
domly generated initial location estimates usually
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lead to poor final solutions. Global search meth-
ods such as simulated annealing or genetic algo-
rithms are generally too slow for practical
applications. The contribution of the MDS-MAP
method [7] is to use efficient MDS techniques to
generate good initial points for the non-linear opti-
mization problem.

In MDS-MAP(D), the local maps are con-
structed using distance information within a cer-
tain range, specified by a mapping range
parameter Rlm. For each node, neighbors within
Rlm hops are involved in building its local map.
The value of Rlm affects the amount of computa-
tion in building the local maps, as well as the accu-
racy of the local maps. Rlm usually takes values 1,
2, or 3. The case of Rlm = 1 only uses information
among 1-hop neighbors and has the smallest com-
putation and communication costs. Its result may
be good for relatively regular network configura-
tions, but usually is not good for randomly placed
nodes. The result of Rlm = 3 is better at the ex-
pense of higher computation and communication
costs. We find that Rlm = 2 usually provides a
good trade-off.

Each node computes its local map using MDS-
MAP through the following steps (see [17] for de-
tails): (a) find the shortest paths between all pairs
of nodes in the local mapping range Rlm. The
shortest path distances are used to construct a ma-
trix of estimated inter-point distances for input to
the MDS procedure. MDS is a well-known data
analysis technique that estimates coordinates for
a set of points, given the inter-point distances;
(b) apply MDS to the distance matrix and con-
struct a 2-D (or 3-D) local map. The classical for-
mulation of MDS has an analytical solution that is
quick to compute. Of course, because MDS is gi-
ven only relative distances, the resulting estimated
coordinates lie at an arbitrary rotation, reflection,
and translation from the absolute coordinate sys-
tem; and (c) minimize least squares error. Using
the MDS solution as the initial point, we solve a
general version of Eq. (1), i.e., performing least
squares minimization (LSM) to encourage the dis-
tances between neighbor nodes to match the meas-
ured ones.

The objective function used in the LSM of Step
(c) not only includes information between 1-hop
TE
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neighbors, but may optionally include information
between multi-hop neighbors, although these dis-
tances can be weighted less. We use a refinement
range Rref, defined in terms of hops, to specify
what information is considered. Rref = 1 means
only distance measures between 1-hop neighbors
are used; Rref = 2 means estimated distances be-
tween nodes up to two hops away are used; and
so on. For two nodes that are more than 1-hop
apart, we use their shortest path distance. Different
values of Rref offer trade-offs between computa-
tional cost and solution quality. Thus, the objec-
tive function is as follows:

min
x

X

i;j

wijðdij � pijÞ
2 for all provided pij ð2Þ

where wij are the weights. If wij = 1 for all pairs of
nodes, then we minimize the sum of squared er-
rors. If wij ¼ 1=p2ij, then we minimize the sum of
squared relative errors. Empirically, we have
found that Rref = 1 is better than Rref = 2 when
range errors are close to 0. When range errors
are over 5%, Rref = 2 is better, and minimizing
the relative error also improves the results slightly.
Thus, in the experiments reported below we use
Rref = 2 and wij ¼ 1=p2ij.

The communication cost of MDS-MAP(D) is
dominated by building local maps. For a node z

to compute its local map, each node within the
mapping range needs to send its connectivity infor-
mation or local distance measures to z. The cost of
computing the alignment of two local maps is
small, where one local map needs to be sent from
one node to the other node. The communication
cost of transforming the position of the target
node to the local coordinate system of the starting
node is also small. Only the coordinates of the tar-
get node need to be sent along the path to the
starting node. At each intermediate node, the
coordinates are transformed using the local trans-
formation matrix.

When computing the absolute positions of
nodes using anchors, MDS-MAP(D) uses a new
iterative method based on a mass-spring model
in the last step to refine the node positions. In this
procedure, mass points are connected to each
other by springs of certain lengths. In the lowest
energy state, the combined force of the springs is
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the smallest. In the refinement method of MDS-
MAP(D), the connectivity or the distances be-
tween neighbor nodes represent the spring lengths.
Imagining the positions of its neighbors to be sta-
tic, each node changes its position to reduce the
combined force that its neighbors put on it. It is
a simple iterative process.

Specifically, assuming the current position of
the node is z, the positions of its neighbors are
yi, i = 1, . . . ,k, and the distance estimates between
z and yi is qi, z is updated in each iteration accord-
ing to the average combined force as follows:

z ¼ zþ 1

k

Xk

i¼1

ðkyi � zk2 � qiÞ
yi � z

kyi � zk2
ð3Þ

The number of iterations is set to 20 in our
experiments.

This method is similar to the resolution of
forces technique [18]. Typical multilateration tech-
niques, such as APS, minimize the sum of squared
errors of the computed distances and measured
distances, whereas resolution of forces minimizes
the combined absolute error. Minimizing squared
error is optimal if the distance errors are normally
distributed, and minimizing absolute error is better
when the errors have a Laplace distribution. In
[18], experimental data show that real distance
measurement errors are more likely to be Laplace
UN
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distributions, where the resolution of forces meth-
od performs well.

Our technique is simple, efficient, and gets good
results. It differs from resolution of forces in two
aspects. One is that we refine the position of a
node using neighbor positions, whereas resolution
of forces estimates the position of an unknown
node using anchor positions and distance estima-
tion to anchors. Our method can also be applied
in the same situation. Secondly, the update rule
is different. In resolution of forces, the new posi-
tion of a node is the current position plus the
resultant of all forces. It is not an iterative process.
When the initial position is far away from the low-
est energy point, its update rule can generate large
position changes and may not converge to the low-
est energy state, even if it runs iteratively. We
found that it did not work well in our experiments
and that our update rule is more robust.
427
TE
D5. Experimental evaluation

To evaluate its performance, we tested MDS-
MAP(D) on both uniform and irregular topolo-
gies. Fig. 2 shows an example of an uniform topol-
ogy with 200 nodes randomly placed inside a
10 · 10 square area and an example of an irregular
topology with 70 nodes placed near the grid points
2 4 6 8 10

79 nodes, R=1.5r, P.E.=0.1

odes are randomly placed in a 10r · 10r square; and (b) regular
r placement errors. The radio range is 1.5r, where the placement
y.



428
429
430
431
432
433
434
435
436
437
438
439
440

441
442
443

444
445
446
447
448
449
450
451
452
453

Y. Shang et al. / Ad Hoc Networks xxx (2004) xxx–xxx 7

ADHOC 109 No. of Pages 14, DTD=5.0.1

17 September 2004; Disk Used
ARTICLE IN PRESS
of a C-shape grid. In the figures, circles represent
nodes and edges represent connections between
nodes that are within communication range of
each other. The connectivity (average number of
neighbors) is controlled by the radio range R.

To model the placement errors in the grid place-
ments, we added Gaussian noise to the coordinates
of the grid points. For example, 10%r placement
error means the coordinates of nodes are the coor-
dinates of corresponding grid points plus random
variables drawn from Gaussian distribution
N(0,10%r). Similarly, the distance measures are
modeled as the true distances plus Gaussian noise.
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Fig. 3. Comparison of MDS-MAP(D) and
OF

For example, if the true distance is d* and the
range error is er, then the measured distance is
d*(1 + y), where y is drawn from N(0,er).

In applying MDS-MAP(D) to the two exam-
ples, each unknown node independently computes
its position estimation based on the anchor posi-
tions and the distance information. The results of
all unknown nodes are shown in Figs. 3 and 4.

A variant of APS was used in the experiments.
A linear system of multilateration is first solved
and the solution is used as the initial point in solv-
ing a system of quadratic equations. Specifically
the method has the following three steps:
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Fig. 4. Comparison of MDS-MAP(D) and APS on the C-shape grid example.
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R1. Each anchor k receives the positions (aj,bj),
j = 1, . . . ,m, of all anchors and also computes
the shortest path distance pkj to each of the
anchors.

2. Each anchor k computes its distance correction

value, ck ¼
Pm

j¼1
dkjPm

j¼1
pkj
, where dkj is the Euclidean

distance between two anchors k and j.

3. For each unknown node i, determine its posi-
tion. First, we solve the following system of lin-
ear equations of two variables, xi and yi, by
least-squares minimization. (Anchor 1 is used
to linearize the equations.)
U 477

478
2ða1 � ajÞxi þ 2ðb1 � bjÞyi þ a2j þ b2j � a21 � b21

¼ ðcjpijÞ
2 � ðc1pi1Þ

2 for j ¼ 2; . . . ;m ð4Þ

Then, we use the solution as the initial point to
solve the following system of quadratic equa-
tions by least-squares minimization.

ðxi � ajÞ2 þ ðyi � bjÞ2 ¼ ðcjpijÞ
2 for j ¼ 1; � � � ;m

ð5Þ

In our experiments, this approach works better
than just solving the linear system [4,12], especially
for networks with lower connectivity and fewer an-
chor nodes. In the rest of the paper, the APS men-
tioned in the experimental results refers to our



C

479
480
481

482

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524

525
526
527
528
529
530
531
532

533
534

535

536

537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570

Y. Shang et al. / Ad Hoc Networks xxx (2004) xxx–xxx 9

ADHOC 109 No. of Pages 14, DTD=5.0.1

17 September 2004; Disk Used
ARTICLE IN PRESS
UN
CO

RR
E

variant of APS. APS using connectivity informa-
tion is also referred to as DV-Hop, and APS using
local distance measures as DV-Distance.

5.1. Examples

To give an intuitive feel for our results, we first
present single specific example runs before report-
ing our more thorough averaged comparisons.
Fig. 3 compares the results of MDS-MAP(D)
and APS, both using the refinement method in
Eq. (3), on the random uniform example. Four
random anchor nodes (denoted by asterisks) are
used. The circles represent the true locations of
the nodes and the lines connect the estimated posi-
tions with the true positions. The longer the line,
the larger the error is.

Using connectivity information only, the aver-
age error of MDS-MAP(D) is 0.59, which is 73%
of the average error of DV-Hop (0.81). The exam-
ple shows that MDS-MAP(D) localizes the un-
known nodes within the convex hull of the
anchors quite accurately, but does poorly on the
group of nodes in the upper-right corner. Because
the four anchors are not spread out and the dis-
tance estimation based on connectivity is very
crude, APS could not generate good result overall.
However, it does better on the group of nodes in
the upper-right corner.

Using local distance measures with 10% range
error, the average error of MDS-MAP(D) is very
small, 0.14 (or 9%R since the radio range R is
1.5), which is only 28% of the error of DV-Dis-
tance (0.5). Note that the MDS-MAP(D) position-
ing error is comparable to the 10% range error.
Now MDS-MAP(D) estimates the positions of
the group of nodes in the upper-right corner very
well due to more accurate local maps. Regarding
APS, it does a better job on the nodes surrounded
by the anchors than the ones in the right half of the
network.

Fig. 4 compares the results of MDS-MAP(D)
and APS on the C-shape grid placement example.
It is interesting to compare the difference of the
two methods on the group of nodes in the upper-
right corner. APS fails badly on them because
the shortest path distance estimation used in mul-
tilateration is far from the actual distance for most
TE
D P

RO
OF

anchors. In addition, local distance measures do
not help APS. MDS-MAP(D) is more tolerant to
the placement of anchors and does a better job
on these nodes. MDS-MAP(D) does an even bet-
ter job on the nodes surrounded by the anchors.
Overall, the average errors of MDS-MAP(D) are
0.45 and 0.39, respectively, for the cases of using
connectivity information and using local distance
measures with 10% range errors, much better than
those of APS.

5.2. Performance comparison of MDS-MAP(D),

APS, and MDS-MAP(P)

In the experiments, we compare the perform-
ance of MDS-MAP(D) and APS on two types of
random networks, and use MDS-MAP(P) as a
baseline. All three methods are run with or with-
out the mass-spring refinement technique in Eq.
(3). The random uniform networks are generated
by placing 200 nodes randomly inside a 10 · 10
square area, and the random irregular networks
are generated by placing 200 nodes randomly in-
side a C-shape area within a 10 · 10 square (simi-
lar to the C-shape of the grid example in Fig. 4.
Fifty random trials were done for each data point.

Fig. 5 shows the results on the random uniform
networks, using connectivity information or local
distance measurement with 10% range error. The
average position estimation error of 50 random tri-
als for each case is plotted against the connectivity
level. Five or ten random anchors are used.

The results show that when using connectivity
information only, MDS-MAP(D) is worse than
APS when the connectivity is below 10 and is
much better when the connectivity is over 12.
The reason is that when the connectivity is low,
the local maps can be inaccurate and their align-
ment can be bad. When this happens, it is better
not to use the local maps. With higher connectiv-
ity, the accurate local maps can provide much
more information than the distance estimation
technique used in APS. Both MDS-MAP(D) and
APS get better results using 10 anchors than using
five anchors.

The mass-spring refinement technique provides
consistent, significant improvement on APS solu-
tions for networks with various connectivity levels.
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Fig. 5. Performance comparison of MDS-MAP(D), APS, and MDS-MAP(P) on the random uniform networks with 200 nodes using 5
or 10 random anchors.
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MAP(D) is also significant for low connectivity
networks, but decreases as the connectivity in-
creases due to the more accurate local maps com-
puted with higher connectivity.

Compared to MDS-MAP(P), MDS-MAP(D) is
much worse on low connectivity networks, but is
comparable on higher connectivity ones. Both
achieve good results of about 18%R (R is the radio
range) positioning errors when the connectivity is
from 16 to 21, using connectivity and five anchors.
MDS-MAP(P) performs consistently better than
APS. The positioning error of MDS-MAP(P) is
about 60% of that of APS on lower connectivity
networks, and goes down to about 50% on higher
connectivity networks.

The results are similar when using local distance
measures with 10% range error. All methods
achieve better results than when using connectivity
only. Positioning errors are reduced as the connec-
tivity increases. Using five anchors, the positioning
errors of MDS-MAP(D) and MDS-MAP(P) with
refinement approach 6%R, whereas the error of
APS with refinement approaches 12%R.

All three methods have the same coverage (the
number of nodes being localized) since they local-
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ize all the nodes in the largest connected network
in each test case, which is more than other existing
methods such as Hop-TERRAIN and the Eucli-
dean method.

Next, we compare their performance on the
irregular topology. Fig. 6 shows the results on
the random irregular networks, using connectivity
information or local distance measurement with
10% range error. The results of using five random
anchors are reported.

The results show that APS performs poorly no
matter whether it uses connectivity or local dis-
tance measures. The reason is that the anchor dis-
tance estimation used by APS are very inaccurate
for multi-hop nodes in this type of network.
MDS-MAP(D) performs equally bad when the
connectivity is low due to inaccurate local maps,
but is much better when the connectivity increases.
MDS-MAP(D) gets better results using the local
distance measurement than just using connectivity.
Its positioning errors approach 20%R and 15%R
when using connectivity and local distance meas-
urement, respectively, for higher connectivity
levels.

Compared to MDS-MAP(P), the performance
difference of MDS-MAP(D) is much smaller than
on the uniform problems. MDS-MAP(P) does
not work well either when the connectivity is
low. They perform similarly when the connectivity
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Fig. 6. Performance comparison of MDS-MAP(D), APS, and MDS-M
five random anchors.
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is high because they use almost the same local
maps and the patching process in MDS-MAP(P)
becomes similar to the alignment processing in
MDS-MAP(D).

Finally, we compare their performance for dif-
ferent range errors. Fig. 7 shows the results on
the random uniform networks using connectivity
or local distance measurement with 1% or 20%
range error and five anchors.

In the 1% range error case, MDS-MAP(D) is
better than APS for connectivity at 8.8, with or
without refinement, which is different from the
10% or 20% range error case. This means that
MDS-MAP(D) has more advantage with more
accurate distance measures due to the better local
maps that can be constructed. Generally, the rela-
tive performance of the three methods is similar to
the 10% range error case shown in Fig. 5.

In the 20% range error case, MDS-MAP(D) be-
comes even worse than APS for connectivity at
8.8. However, MDS-MAP(D) is still better when
the connectivity is over 12, and the relative per-
formance difference is similar to the 10% range er-
ror case. An interesting observation is that at
connectivity level 21, MDS-MAP(D) without
refinement has noticeably better solutions than
MDS-MAP(D) with refinement. This suggests that
when some local distance measurement is very
inaccurate, the refinement based on distances to
Using local distance measures
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AP(P) on the random irregular networks with 200 nodes using
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Fig. 7. Results of MDS-MAP(D), APS, and MDS-MAP(P) on the random uniform networks using local distance measures with 1% or
20% range error and five anchors.
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1-hop neighbors may not be helpful when the con-
nectivity is high.

In addition to random networks, we also tested
MDS-MAP(D) on grid networks similar to the C-
shape grid network in Fig. 2. Because of the regu-
lar structures of these type of networks, MDS-
MAP(D) is able to build more accurate local maps
for networks with low connectivity. Overall, MDS-
MAP(D) performs much better on grid networks
than on random networks and can achieve compa-
rable positioning errors at much lower connectiv-
ity levels.
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5.3. Relative position estimation

In this section, we present the results of MDS-
MAP(D) in estimating the position of a remote
(target) node relative to a center (starting) node.
In each trial, a random network is first generated.
Then a random center and a random target (re-
mote) node a certain number of hops away are se-
lected. By aligning the local map of the center node
using the absolute positions of the nodes in the lo-
cal map, the estimated relative position of the re-
mote (target) nodes is compared with its true
absolute position. The difference is the position
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nectivity 12.3 and 8.8 using local distance measures with range
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estimation error. Again, 50 random trials were
conducted for each data point.

Fig. 8 shows the result of MDS-MAP(D) on the
200-node random uniform networks using local
distance measurements with range errors from
0% to 20%. The average positioning errors of the
target (remote) nodes are plotted against the
length of the communication path. The radio
ranges are 1.5 and 1.25, respectively. As the range
error increases, the positioning accuracy degrades,
especially quickly for longer paths and networks
with low connectivity. The algorithm performs
reasonably well when the range error is less than
10%. In addition, we also tried the method on grid
networks and obtained better results.
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6. Conclusions

In this paper, we presented a new distributed
localization approach called PLM, based on com-
bining local maps along a path between two net-
work nodes. We instantiated the approach using
the MDS-MAP(P) algorithm to build the local
maps, resulting in the distributed algorithm we call
MDS-MAP(D). Each node computes its relative
local map at most once. The alignment of one local
map with another is also done at most once. Given
a sequence of overlapping local maps along a path,
a sequence of transformations can be used to com-
pute the position of the remote node in the coordi-
nate system of the center node. If the center node
knows the absolute positions of three or more
nodes that are in its local map, it can compute
its own absolute position. Through simulation,
we showed that MDS-MAP(D) performs well on
both regular and irregular topologies when there
is medium to high connectivity, e.g., more than
ten for random networks and six for grid net-
works, and when the range errors are small, e.g.,
10%. The algorithm significantly outperforms
existing methods, e.g., APS, on cases with just a
few anchor nodes, and especially on irregular
networks.

PLM is a general approach and is independent
of the way local maps are computed. For example,
it can also build local maps by solving the localiza-
tion problem as semidefinite programming prob-
lems, which can generate accurate local maps
when range errors are small [16]. An important re-
search direction is to study the properties of differ-
ent methods for building relative maps and their
performance in a local-map based localization
framework.
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