Allocating Planning Effort when Actions Expire

Shahaf S. Shperberg,¹ Andrew Coles,² Bence Cserna,³ Erez Karpas,⁴ Wheeler Ruml,³ Solomon Eyal Shimony¹

¹Ben-Gurion University, Israel ²King's College London, UK ³University of New Hampshire, USA ⁴Technion — Israel Institute of Technology, Israel

Wheeler Ruml (UNH)

Allocating Planning Effort when Actions Expire – 1 / 14

The Problem

Formalization

Analysis

Algorithms

Conclusion

'situated temporal planning', 'time-aware planning'

Example: planning a route involving a bus ride

- 'take 10:00 bus' action <mark>expires</mark> at 10:00 subtree of plans becomes invalid consider only if sufficient time to complete plan
- exploring 'take 9:47 bus' action can invalidate 10:00 action searching under multiple nodes means less time for each
- plan expiration time uncertain until plan is complete but completion effort also uncertain

which plans to explore?

The Problem

Formalization

Analysis

Algorithms

Conclusion

'situated temporal planning', 'time-aware planning'

Example: planning a route involving a bus ride

- 'take 10:00 bus' action <mark>expires</mark> at 10:00 subtree of plans becomes invalid consider only if sufficient time to complete plan
- exploring 'take 9:47 bus' action can invalidate 10:00 action searching under multiple nodes means less time for each
- plan expiration time uncertain until plan is complete but completion effort also uncertain

which plans to explore?

We formalize and analyze this problem.

■ The Problem

Formalization

Analysis

Algorithms

Conclusion

n partial plans/nodes/processes to share CPU, discrete time For each process *i*, given **termination CDF** $M_i(t) =$ probability *i* requires CPU time $\leq t$ like heuristic for effort required **success probability** $P_i =$ probability *i* results in solution without considering time found **deadline CDF** $D_i(t) =$ probability *i* expires before wall time *t* not certain until solution is complete

Find schedule for processes that

- maximizes probability of finding a solution
- that is still valid when found

Analysis

- The AE2 MDP
- Solving AE2
- Diminish. Returns

Algorithms

Conclusion

Analysis

Wheeler Ruml (UNH)

Allocating Planning Effort when Actions Expire – 4 / 14

The AE2 MDP

Introduction

Analysis

■ The AE2 MDP

■ Solving AE2

Diminish. Returns

Algorithms

Conclusion

AE2 as MDP, policy = time-aware planning strategy

States: $\langle T, T_1, \ldots, T_n \rangle$ where T is wall clock time T_i is time allocated so far to process $i \ (\perp = failed)$ terminal states: SUCCESS and FAIL

Reward: 1 in SUCCESS, 0 elsewhere

Actions: a_i allocates one time unit to i

Transitions: derive probabilities from $M_i(T_i), P_i, D_i(T)$ increment T and T_i unless terminated, if failed, $T_i = \bot$ and FAIL if all \bot . otherwise, SUCCESS.

Introd	uction
muou	uction

Analysis

■ The AE2 MDP

■ Solving AE2

■ Diminish. Returns

Algorithms

Conclusion

State space exponential in n.

Analysis

■ The AE2 MDP

■ Solving AE2

Diminish. Returns

Algorithms

Conclusion

State space exponential in n.

Restricted cases:

- 1. Linear policies (no feedback): (1, 1, 2, 1, 1, 3, ...)
- 2. Linear contiguous policies: (1, 1, 1, 2, 2, 3, 3, 3, ...)
- 3. Known deadlines

Analysis

■ The AE2 MDP

■ Solving AE2

Diminish. Returns

Algorithms

Conclusion

State space exponential in n.

Restricted cases:

- 1. Linear policies (no feedback): (1, 1, 2, 1, 1, 3, ...)
- 2. Linear contiguous policies: (1, 1, 1, 2, 2, 3, 3, 3, ...)
- 3. Known deadlines

Good news:

Theorem. With known deadlines, there exists a linear contiguous policy that is an optimal solution.

Analysis

■ The AE2 MDP

■ Solving AE2

Diminish. Returns

Algorithms

Conclusion

State space exponential in n.

Restricted cases:

- 1. Linear policies (no feedback): (1, 1, 2, 1, 1, 3, ...)
- 2. Linear contiguous policies: (1, 1, 1, 2, 2, 3, 3, 3, ...)
- 3. Known deadlines

Good news:

Theorem. With known deadlines, there exists a linear contiguous policy that is an optimal solution.

Bad news:

Theorem. Finding the optimal (linear contiguous) policy for the case of known deadlines is NP-hard.

Implies that solving the full AE2 MDP is NP-hard.

Analysis

■ The AE2 MDP

■ Solving AE2

Diminish. Returns

Algorithms

Conclusion

State space exponential in n.

Restricted cases:

- 1. Linear policies (no feedback): (1, 1, 2, 1, 1, 3, ...)
- 2. Linear contiguous policies: (1, 1, 1, 2, 2, 3, 3, 3, ...)
- 3. Known deadlines

Good news:

Theorem. With known deadlines, there exists a linear contiguous policy that is an optimal solution.

Bad news:

Theorem. Finding the optimal (linear contiguous) policy for the case of known deadlines is NP-hard.

Implies that solving the full AE2 MDP is NP-hard.

However...

Diminishing Returns

Wheeler Ruml (UNH)

Theorem. With known deadlines and diminishing logarithm of returns, optimal policy can be computed in polynomial time.

Wheeler Ruml (UNH)

Analysis

Algorithms

- 4 Types of Algs
- Exp. Set-up
- $\blacksquare \text{ Results } 1$
- Results 2

Conclusion

Algorithms

Wheeler Ruml (UNH)

Allocating Planning Effort when Actions Expire – 8 / 14

roduction	Optima
alysis	Simple
gorithms	
4 Types of Algs	robin
Exp. Set-up	
Results 1	Dimini
Results 2	
nclusion	Greedy

Int

An

Co

Dptimal: solve MDP directly

mple Heuristics: run 'most promising' until failure; round robin; random

DiminishingReturns: optimal for DR

Greedy: inspired by DR, basically at each step select most likely to succeed

metric: probability a non-expired solution is found

Experimental Set-up

Introduction	
Analysis	
Algorithms	
■ 4 Types of Algs	
Exp. Set-up	
Results 1	
Results 2	

Conclusion

```
synthetic M_i(t), P_i, D_i(t)
```

- distributions: exponential (diminishing returns!), normal, uniform
- tried range of parameters

temporal planning problems

- OPTIC planner (as in ICAPS-18) on Robocup Logistics League
- search trees used to generate snapshots

known and unknown deadlines

Results with Known Deadlines

Introduction	dist	n	Greedy	DR	MP
Introduction	В	2	0.61	0.67	0.70
Analysis		5	0.72	0.82	0.61
Algorithms		10	0.60	0.88	0.71
■ 4 Types of Algs		100	0.81	0.99	0.91
	Ν	2	0.56	0.45	0.33
		5	0.83	0.72	0.27
Results 2		10	0.93	0.41	0.09
		100	1.00	0.70	0.23
Conclusion	U	2	0.61	0.65	0.50
		5	0.90	0.88	0.75
		10	0.98	0.98	0.66
		100	1.00	1.00	0.80
	Р	2	0.72	0.79	0.01
		5	0.78	0.81	0.79
		10	1.00	0.87	0.99
		100	1.00	0.91	0.86
	a	vg	0.82	0.78	0.58
simp	le 'M	ost P	romisin	g' not	: so good

Results with Known Deadlines

Introduction		dist	n	Greedy	DR	MP
		В	2	0.61	0.67	0.70
Analysis			5	0.72	0.82	0.61
Algorithms			10	0.60	0.88	0.71
■ 4 Types of Algs			100	0.81	0.99	0.91
Evn Set un		Ν	2	0.56	0.45	0.33
Results 1			5	0.83	0.72	0.27
Results 2			10	0.93	0.41	0.09
			100	1.00	0.70	0.23
Conclusion		U	2	0.61	0.65	0.50
			5	0.90	0.88	0.75
			10	0.98	0.98	0.66
			100	1.00	1.00	0.80
		Р	2	0.72	0.79	0.01
			5	0.78	0.81	0.79
			10	1.00	0.87	0.99
			100	1.00	0.91	0.86
			avg	0.82	0.78	0.58
	simp	le 'I	Most P	romisir	ig' no	t so good

DR optimal for DR, okay with known deadline

Wheeler Ruml (UNH)

Allocating Planning Effort when Actions Expire – 11 / 14

Results with Known Deadlines

Introduction		dist	n	Greedy	DR	MP
Introduction		В	2	0.61	0.67	0.70
Analysis			5	0.72	0.82	0.61
Algorithms			10	0.60	0.88	0.71
■ 4 Types of Algs			100	0.81	0.99	0.91
Exp Set-up		N	2	0.56	0.45	0.33
Results 1			5	0.83	0.72	0.27
Results 2			10	0.93	0.41	0.09
			100	1.00	0.70	0.23
Conclusion		U	2	0.61	0.65	0.50
			5	0.90	0.88	0.75
			10	0.98	0.98	0.66
			100	1.00	1.00	0.80
		Р	2	0.72	0.79	0.01
			5	0.78	0.81	0.79
			10	1.00	0.87	0.99
			100	1.00	0.91	0.86
		ā	avg	0.82	0.78	0.58
			-			
	sim	ple 'N	/lost F	Promisir	ng' no	t so good
	DR opti	mal fo	or DR	, okay v	vith k	nown deadli

Greedy quite respectable

Wheeler Ruml (UNH)

Results with Unknown Deadlines

Introduction	dist	n	Greedy	DR	MP
	В	2	0.61	0.35	0.64
Analysis		5	0.65	0.36	0.63
Algorithms		10	0.70	0.45	0.66
$\blacksquare 4 \text{ Types of Algs}$		100	0.70	0.44	0.65
Fyn Set-un	Ν	2	0.63	0.37	0.20
		5	0.70	0.35	0.09
		10	0.65	0.30	0.15
		100	0.76	0.32	0.06
Conclusion	U	2	0.68	0.39	0.53
		5	0.70	0.43	0.57
		10	0.78	0.46	0.59
		100	0.86	0.52	0.59
	Р	2	0.61	0.24	0.46
		5	0.90	0.54	0.45
		10	0.90	0.32	0.62
		100	0.85	0.77	0.38
	av	/g	0.73	0.41	0.45
DF	R poc	or for	unknov	vn dea	adlines

Results with Unknown Deadlines

Introduction	dist	n	Greedy	DR	MP
Introduction	В	2	0.61	0.35	0.64
Analysis		5	0.65	0.36	0.63
Algorithms		10	0.70	0.45	0.66
A Types of Algs		100	0.70	0.44	0.65
Even Set up	N	2	0.63	0.37	0.20
Exp. Set-up Deculte 1		5	0.70	0.35	0.09
Results 1		10	0.65	0.30	0.15
		100	0.76	0.32	0.06
Conclusion	U	2	0.68	0.39	0.53
		5	0.70	0.43	0.57
		10	0.78	0.46	0.59
		100	0.86	0.52	0.59
	Р	2	0.61	0.24	0.46
		5	0.90	0.54	0.45
		10	0.90	0.32	0.62
		100	0.85	0.77	0.38
	a	√g	0.73	0.41	0.45
D	R po Gre	or for eedy	unknov still res	wn de pectal	adlines ble

Analysis

Algorithms

Conclusion

■ Summary

Conclusion

Wheeler Ruml (UNH)

Allocating Planning Effort when Actions Expire – 13 / 14

Summary

Introduction	
Analysis	
Algorithms	
Conclusion	
Summary	

Planning while time passes is extra hard!

- benefits from deliberation scheduling
- AE2 captures the most basic form of the problem
 - NP-hard to solve except in restricted cases
- A greedy approach can perform well
- both random problems and planner search trees
- reasonable runtime

Further directions

- integrate into a planner
- solution cost