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‘situated temporal planning’, ‘time-aware planning’

Example: planning a route involving a bus ride

■ ‘take 10:00 bus’ action expires at 10:00
subtree of plans becomes invalid
consider only if sufficient time to complete plan

■ exploring ‘take 9:47 bus’ action can invalidate 10:00 action
searching under multiple nodes means less time for each

■ plan expiration time uncertain until plan is complete
but completion effort also uncertain

■ which plans to explore?
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‘situated temporal planning’, ‘time-aware planning’

Example: planning a route involving a bus ride

■ ‘take 10:00 bus’ action expires at 10:00
subtree of plans becomes invalid
consider only if sufficient time to complete plan

■ exploring ‘take 9:47 bus’ action can invalidate 10:00 action
searching under multiple nodes means less time for each

■ plan expiration time uncertain until plan is complete
but completion effort also uncertain

■ which plans to explore?

We formalize and analyze this problem.
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n partial plans/nodes/processes to share CPU, discrete time

For each process i, given

termination CDF Mi(t) = probability i requires CPU time ≤ t

like heuristic for effort required
success probability Pi = probability i results in solution

without considering time found
deadline CDF Di(t) = probability i expires before wall time t

not certain until solution is complete

Find schedule for processes that

■ maximizes probability of finding a solution
■ that is still valid when found
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AE2 as MDP, policy = time-aware planning strategy

States: 〈T, T1, . . . , Tn〉 where
T is wall clock time
Ti is time allocated so far to process i (⊥ = failed)
terminal states: SUCCESS and FAIL

Reward: 1 in SUCCESS, 0 elsewhere

Actions: ai allocates one time unit to i

Transitions: derive probabilities from Mi(Ti), Pi, Di(T )
increment T and Ti unless terminated,
if failed, Ti = ⊥ and FAIL if all ⊥.
otherwise, SUCCESS.
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State space exponential in n.
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State space exponential in n.

Restricted cases:

1. Linear policies (no feedback): (1, 1, 2, 1, 1, 3, ...)
2. Linear contiguous policies: (1, 1, 1, 2, 2, 3, 3, 3, ...)
3. Known deadlines
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Restricted cases:

1. Linear policies (no feedback): (1, 1, 2, 1, 1, 3, ...)
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3. Known deadlines

Good news:

Theorem. With known deadlines, there exists a linear
contiguous policy that is an optimal solution.



Solving the AE2 MDP

Introduction

Analysis

■ The AE2 MDP

■ Solving AE2

■ Diminish. Returns

Algorithms

Conclusion

Wheeler Ruml (UNH) Allocating Planning Effort when Actions Expire – 6 / 14

State space exponential in n.

Restricted cases:

1. Linear policies (no feedback): (1, 1, 2, 1, 1, 3, ...)
2. Linear contiguous policies: (1, 1, 1, 2, 2, 3, 3, 3, ...)
3. Known deadlines

Good news:

Theorem. With known deadlines, there exists a linear
contiguous policy that is an optimal solution.

Bad news:

Theorem. Finding the optimal (linear contiguous) policy for the
case of known deadlines is NP-hard.

Implies that solving the full AE2 MDP is NP-hard.
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State space exponential in n.

Restricted cases:

1. Linear policies (no feedback): (1, 1, 2, 1, 1, 3, ...)
2. Linear contiguous policies: (1, 1, 1, 2, 2, 3, 3, 3, ...)
3. Known deadlines

Good news:

Theorem. With known deadlines, there exists a linear
contiguous policy that is an optimal solution.

Bad news:

Theorem. Finding the optimal (linear contiguous) policy for the
case of known deadlines is NP-hard.

Implies that solving the full AE2 MDP is NP-hard.

However...
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log probability i still running: LPRi(t)

diminishing returns: d(LPRi(t))
dt

is non-decreasing (B&D, 1994)
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log probability i still running: LPRi(t)

diminishing returns: d(LPRi(t))
dt

is non-decreasing (B&D, 1994)

Good news:

Theorem. With known deadlines and diminishing logarithm of
returns, optimal policy can be computed in polynomial time.
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Optimal: solve MDP directly

Simple Heuristics: run ‘most promising’ until failure; round
robin; random

DiminishingReturns: optimal for DR

Greedy: inspired by DR, basically at each step select most
likely to succeed

metric: probability a non-expired solution is found
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synthetic Mi(t), Pi, Di(t)

■ distributions: exponential (diminishing returns!), normal,
uniform

■ tried range of parameters

temporal planning problems

■ OPTIC planner (as in ICAPS-18) on Robocup Logistics
League

■ search trees used to generate snapshots

known and unknown deadlines
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dist n Greedy DR MP

B 2 0.61 0.67 0.70
5 0.72 0.82 0.61
10 0.60 0.88 0.71
100 0.81 0.99 0.91

N 2 0.56 0.45 0.33
5 0.83 0.72 0.27
10 0.93 0.41 0.09
100 1.00 0.70 0.23

U 2 0.61 0.65 0.50
5 0.90 0.88 0.75
10 0.98 0.98 0.66
100 1.00 1.00 0.80

P 2 0.72 0.79 0.01
5 0.78 0.81 0.79
10 1.00 0.87 0.99
100 1.00 0.91 0.86

avg 0.82 0.78 0.58

simple ‘Most Promising’ not so good
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dist n Greedy DR MP

B 2 0.61 0.67 0.70
5 0.72 0.82 0.61
10 0.60 0.88 0.71
100 0.81 0.99 0.91

N 2 0.56 0.45 0.33
5 0.83 0.72 0.27
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simple ‘Most Promising’ not so good
DR optimal for DR, okay with known deadline

Greedy quite respectable
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dist n Greedy DR MP

B 2 0.61 0.35 0.64
5 0.65 0.36 0.63
10 0.70 0.45 0.66
100 0.70 0.44 0.65

N 2 0.63 0.37 0.20
5 0.70 0.35 0.09
10 0.65 0.30 0.15
100 0.76 0.32 0.06

U 2 0.68 0.39 0.53
5 0.70 0.43 0.57
10 0.78 0.46 0.59
100 0.86 0.52 0.59

P 2 0.61 0.24 0.46
5 0.90 0.54 0.45
10 0.90 0.32 0.62
100 0.85 0.77 0.38

avg 0.73 0.41 0.45

DR poor for unknown deadlines
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dist n Greedy DR MP
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avg 0.73 0.41 0.45

DR poor for unknown deadlines
Greedy still respectable
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Planning while time passes is extra hard!

■ benefits from deliberation scheduling
■ AE2 captures the most basic form of the problem
■ NP-hard to solve except in restricted cases

A greedy approach can perform well

■ both random problems and planner search trees
■ reasonable runtime

Further directions

■ integrate into a planner
■ solution cost
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